Properties of Exponents

An exponent (also called power or degree) tells us how many times the base will be multiplied by itself. For example x^{5}, the exponent is 5 and the base is x. This means that the variable x will be multiplied by itself 5 times. You can also think of this as x to the fifth power.

Below is a list of properties of exponents:

Properties	General Form	Application	Example
Product Rule Same base add exponents	$a^{m} a^{n}$	a^{m+n}	$x^{5} x^{3}=x^{5+3}=x^{8}$
Quotient Rule Same base subtract exponents	$\frac{a^{m}}{a^{n}}$	a^{m-n}	$\frac{x^{9}}{x^{5}}=x^{9-5}=x^{4}$
Power Rule I Power raised to a power multiply exponents.	$\left(a^{m}\right)^{n}$	$a^{m n}$	$\left(x^{3}\right)^{4}=x^{3 \cdot 4}=x^{12}$
Power Rule II Product to power distribute to each base	$(a b)^{m}$	$a^{m}{ }^{n}$	$\left(4 x^{3}\right)^{2}=4^{2} x^{3 \cdot 2}=16 x^{6}$
Negative Exponent I Flip and change sign to positive	a^{-m}	$\frac{1}{a^{m}}$	$x^{-3}=\frac{1}{x^{3}}$
Negative Exponent II Flip and change sign to positive	$\frac{1}{a^{-m}}$	a^{m}	$\frac{1}{x^{-5}}=x^{5}$
Zero Exponent Anything to the zero power (except 0) is one	a^{0}	$a^{0}=1$	$(-4 x)^{0}=1$

- It is important to note that none of these applications can occur if the bases are not the same.

For example, $\frac{x^{5}}{y^{3}}$ cannot be simplified.

At one point, you may be asked to use a combination of these properties.
Example:

- $\frac{\left(2^{3} y^{2}\right)^{5}}{2^{10} y^{16}}$
- $\frac{2^{3 \cdot 5} y^{2 \cdot 5}}{2^{10} y^{16}}$
- $\frac{2^{15} y^{10}}{2^{10} y^{16}}$
\rightarrow Quotient Rule
- $2^{15-10} y^{10-16}$
- $2^{5} y^{-6}$
\rightarrow Negative Exponent
- $\frac{32}{y^{6}}$

Example:

- $\left(\frac{p^{-4} q}{r^{-3}}\right)^{-3} \quad \rightarrow$ Power Rule
- $\frac{p^{-4 \cdot-3} q^{1 \cdot-3}}{r^{-3 \cdot-3}}$ Note: When a base does not have an exponent there is really a one as the power. So that, q is understood as q^{1}
- $\frac{p^{12} q^{-3}}{r^{9}} \rightarrow$ Negative Exponents
- $\frac{p^{12}}{q^{3} r^{9}}$

