TEST NAME: math $\mathbf{1}$ jan 24
TEST ID: 2825270
GRADE: 09 - Ninth Grade
SUBJECT: Mathematics
TEST CATEGORY: My Classroom

Student:

Class:

Date:

1. Which table BEST represents the relationship between n, the position of the term in a sequence, and the value of the term defined by the rule $5 n-3$?
A

Position	1	2	3	4	n
Value of Term	8	13	18	23	

B.

Position	1	2	3	4	n
Value of Term	2	-1	-4	-7	

C.

Position	1	2	3	4	n
Value of Term	2	7	12	17	

D.

Position	1	2	3	4	n
Value of Term	5	10	15	20	

2. A sequence is defined recursively as follows.

$$
\begin{gathered}
f(1)=6 \\
f(n)=\frac{1}{3} f(n-1)
\end{gathered}
$$

What are the first five terms of this sequence?
A $6,2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}$
B. $6,2, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}$
C. $6,6 \frac{1}{3}, 6 \frac{2}{3}, 7,7 \frac{1}{3}$
D. $6,6 \frac{1}{3}, 6 \frac{1}{9}, 6 \frac{1}{27}, 6 \frac{1}{81}$
3. A sequence is defined recursively as follows.

$$
\begin{aligned}
a_{1} & =8 \\
a_{n+1} & =0.5 a_{n}
\end{aligned}
$$

What is the value of a_{7} ?
A. 0.125
B. 0.25
C. 2
D. 4
4. If $E F G H$ is an isosceles trapezoid, what are the coordinates of H ?

A $(4,1)$
B. $(5,1)$
C. $(7,1)$
D. $(8,1)$
5. The graph of the line $y=-3 x+12$ intersects the x-axis and y-axis to form a triangle. What is the approximate perimeter of the triangle?

A 13 units
B. 16 units
C. 29 units
D. 45 units
6. Which set of coordinates could be the vertices of an isosceles triangle?

A $(1,-7),(1,-3),(4,-2)$
B. $(0,2),(3,3),(3,7)$
C. $(-1,-6),(1,-3),(4,-1)$
D. $(-4,2),(3,3),(-1,7)$
7. Which is an equation of a line perpendicular to the graph of $2 x-3 y=$ 17?
A. $2 x-3 y=7$
B. $3 x-2 y=17$
c. $4 x+6 y=19$
D. $6 x+4 y=9$
8. What is the slope of a line that is parallel to the y-axis?

A ${ }^{-1}$
B. 0
C. 1
D. undefined
9. Which is an equation of the line parallel to $2 y-6 x=-2$ that passes through the point $(2,-1)$?
A. $y=3 x-5$
B. $y=3 x+5$
c. $y=3 x-7$
D. $y=3 x+7$
10. A linear function is shown below.

A $3 x-5 y=-21$
B. $3 x-5 y=9$
C. $5 x-3 y=-1$
D. $5 x-3 y=19$
11. Quadrilateral $P Q R S$ has vertices at $P(-5,1), Q(-2,4), R(-1,0)$, and $S(-4,-3)$. Quadrilateral $K L M N$ has vertices $K(a, b)$ and $L(c, d)$. Which equation must be true to prove
$K L M N \cong P Q R S$?
A. $\frac{4-1}{-2-(-5)}=\frac{d-b}{c-a}$
B. $\frac{+-0}{-2-(-1)}=\frac{d-b}{c-a}$
C. $\sqrt{(4+1)^{2}+(-2-5)^{2}}=\sqrt{(c+a)^{2}+(d+b)^{2}}$
D. $\sqrt{(0-4)^{2}+(-1+2)^{2}}=\sqrt{(d-b)^{2}+(c-a)^{2}}$
12. The locations of the vertices of quadrilateral $L M N P$ are shown on the grid below.

Quadrilateral STUV is congruent to $L M N P$. What are the lengths of the diagonals of STUV?

A $S U=2 \sqrt{10}$ and $T V=2 \sqrt{5}$
B. $S U=2 \sqrt{5}$ and $T V=2 \sqrt{10}$
C. $S U=2 \sqrt{5}$ and $T V=10$
D. $S U=10$ and $T V=2 \sqrt{5}$
13. A student is using coordinate geometry to prove $\triangle L M N \cong \triangle T M N$, as shown on the grid below.

Which equation should be used to prove $\overline{L M} \cong \overline{M T}$?
A $\sqrt{(-a-a)^{2}+(b-b)^{2}}=\sqrt{(a+a)^{2}+(b-b)^{2}}$
B. $\sqrt{(0+a)^{2}+(c-b)^{2}}=\sqrt{(a-0)^{2}+(b-c)^{2}}$
C. $\frac{b-c}{-a-0}=\frac{b-b}{a+a}$
D. $\frac{c-b}{0-a}=\frac{c-b}{0+a}$
14. Which equation below has a linear graph that is perpendicular to the graph of $x=-4$?

A $y=3$
B. $x=4$
C. $y=-4 x$
D. $y=4 x$
15. What is the slope of a line that is parallel to the y-axis?

A 0
B. 1
C. -1
D. undefined
16. Points W, X, Y, and Z are marked on the coordinate grid below.

Which statement below can be used to prove $\overline{W X} \perp \overline{X Y}$?
A. $\left(\frac{4-1}{1-2}\right)\left(\frac{1-4}{4-1}\right)=1$
B. $\left(\frac{4-1}{1-2}\right)\left(\frac{1-4}{4-1}\right)=-1$
C. $\left(\frac{4-1}{1-(-2)}\right)\left(\frac{1-4}{4-1}\right)=1$
D. $\left(\frac{4-1}{1-(-2)}\right)\left(\frac{1-4}{4-1}\right)=-1$
17. What is the slope of a line that is perpendicular to the graph of $y=\frac{4}{3} x+9$?
A. $-\frac{4}{3}$
B. $-\frac{3}{4}$
C. $\frac{3}{4}$
D. $\frac{4}{3}$
18. The endpoints of a line segment are located at $(4,-2)$ and $(h, 10)$. The midpoint of the line segment is located at (f, g). What are the coordinates of (f, g) ?
A. $\left(\frac{4+h}{2}, 4\right)$
B. $\left(\frac{4-h}{2}, 4\right)$
C. $\left(\frac{4+h}{2}, 6\right)$
D. $\left(\frac{4-h}{2}, 6\right)$
19. Line segment $G H$ has its midpoint at M. If G is located at $(-2,4)$ and M is located at $(6,12)$, then what are the coordinates of H ?

A $(2,8)$
B. $(5,11)$
C. $(14,20)$
D. $(20,14)$
20. A circle has a diameter that extends from $(4,-6)$ to $(-8,10)$. What are the coordinates of the center of the circle?

A $(-2,2)$
B. $(-3,6)$
C. $(-4,4)$
D. $(-6,8)$

