TEST NAME: math 1 jan 24 TEST ID: 2825270 GRADE: 09 - Ninth Grade SUBJECT: Mathematics TEST CATEGORY: My Classroom



## 01/24/19, math 1 jan 24

Student:

| Class: |  |  |
|--------|--|--|
| Date:  |  |  |

1. Which table BEST represents the relationship between *n*, the position of the term in a sequence, and the value of the term defined by the rule 5n-3?

| A. | Position      | 1 | 2  | 3   | 4  | n |
|----|---------------|---|----|-----|----|---|
|    | Value of Term | 8 | 13 | 18  | 23 |   |
| В. | Position      | 1 | 2  | 3   | 4  | n |
|    | Value of Term | 2 | -1 | -4  | -7 |   |
| C. | Position      | 1 | 2  | 3   | 4  | n |
|    | Value of Term | 2 | 7  | 12  | 17 |   |
| D. | Position      | 1 | 2  | 3   | 4  | n |
|    |               | _ | 40 | 4.5 |    |   |

2. A sequence is defined recursively as follows.

$$f(1) = 6$$
$$f\left(n\right) = \frac{1}{3}f(n-1)$$

What are the first five terms of this sequence?

A 6, 2, 
$$\frac{2}{3}$$
,  $\frac{2}{9}$ ,  $\frac{2}{27}$   
B. 6, 2,  $\frac{1}{6}$ ,  $\frac{1}{18}$ ,  $\frac{1}{54}$   
C. 6,  $6\frac{1}{3}$ ,  $6\frac{2}{3}$ , 7,  $7\frac{1}{3}$   
D. 6,  $6\frac{1}{3}$ ,  $6\frac{1}{9}$ ,  $6\frac{1}{27}$ ,  $6\frac{1}{81}$ 



3. A sequence is defined recursively as follows.

 $a_1 = 8$ 

 $a_{n+1} = 0.5a_n$ 

What is the value of  $a_7$ ?

A 0.125

- B. 0.25
- C. 2
- D. 4
- <sup>4.</sup> If *EFGH* is an isosceles trapezoid, what are the coordinates of H?



- A (4, 1)
- B. (5, 1)
- <sup>C.</sup> (7, 1)
- D. (8, 1)



- <sup>5.</sup> The graph of the line y = -3x + 12 intersects the *x*-axis and *y*-axis to form a triangle. What is the **approximate** perimeter of the triangle?
  - A 13 units
  - <sup>B.</sup> 16 units
  - <sup>C.</sup> 29 units
  - D. 45 units
- 6. Which set of coordinates could be the vertices of an isosceles triangle?
  - A (1, <sup>-</sup>7), (1, <sup>-</sup>3), (4, <sup>-</sup>2)
  - <sup>B.</sup> (0, 2), (3, 3), (3, 7)
  - <sup>C.</sup> (<sup>-</sup>1, <sup>-</sup>6), (1, <sup>-</sup>3), (4, <sup>-</sup>1)
  - D. (-4, 2), (3, 3), (-1, 7)
- <sup>7.</sup> Which is an equation of a line perpendicular to the graph of 2x 3y = 17?
  - A 2x 3y = 7
  - B. 3x 2y = 17
  - C. 4x + 6y = 19
  - D. 6x + 4y = 9
- 8. What is the slope of a line that is parallel to the y-axis?
  - A -1
  - в. О
  - C. 1
  - D. undefined



- 9. Which is an equation of the line parallel to 2y 6x = -2 that passes through the point (2, -1)?
  - A y = 3x 5
  - B. y = 3x + 5
  - C. y = 3x 7
  - D. y = 3x + 7
- <sup>10.</sup> A linear function is shown below.



- A 3x 5y = -21
- B. 3x 5y = 9
- C. 5x 3y = -1
- D. 5x 3y = 19



11. Quadrilateral PQRS has vertices at P(-5, 1), Q(-2, 4), R(-1, 0), and S(-4, -3). Quadrilateral KLMN has vertices K(a, b) and L(c, d). Which equation must be true to prove

 $KLMN \cong PQRS?$ 

- A  $\frac{4-1}{-2-(-5)} = \frac{d-b}{c-a}$ B.  $\frac{4-0}{-2-(-1)} = \frac{d-b}{c-a}$ C.  $\sqrt{(4+1)^2 + (-2-5)^2} = \sqrt{(c+a)^2 + (d+b)^2}$ D.  $\sqrt{(0-4)^2 + (-1+2)^2} = \sqrt{(d-b)^2 + (c-a)^2}$
- <sup>12.</sup> The locations of the vertices of quadrilateral *LMNP* are shown on the grid below.



## Quadrilateral *STUV* is congruent to *LMNP*. What are the lengths of the diagonals of *STUV*?

- A  $SU = 2\sqrt{10}$  and  $TV = 2\sqrt{5}$
- B.  $SU = 2\sqrt{5}$  and  $TV = 2\sqrt{10}$
- C.  $SU = 2\sqrt{5}$  and TV = 10
- D. SU = 10 and  $TV = 2\sqrt{5}$



<sup>13.</sup> A student is using coordinate geometry to prove  $\triangle LMN \cong \triangle TMN$ , as shown on the grid below.



Which equation should be used to prove  $\overline{LM} \cong \overline{MT?}$ 

A 
$$\sqrt{(-a-a)^2 + (b-b)^2} = \sqrt{(a+a)^2 + (b-b)^2}$$
  
B.  $\sqrt{(0+a)^2 + (c-b)^2} = \sqrt{(a-0)^2 + (b-c)^2}$   
C.  $\frac{b-c}{-a-0} = \frac{b-b}{a+a}$   
D.  $\frac{c-b}{0-a} = \frac{c-b}{0+a}$ 

## <sup>14.</sup> Which equation below has a linear graph that is perpendicular to the graph of x = -4?

A y = 3B. x = 4C. y = -4xD. y = 4x

## <sup>15.</sup> What is the slope of a line that is parallel to the *y*-axis?

- A 0
- B. 1
- C. \_1
- D. undefined



<sup>16.</sup> Points *W*, *X*, *Y*, and *Z* are marked on the coordinate grid below.



Which statement below can be used to prove  $\frac{1}{WX} \perp \frac{1}{XY}$ ?

- $A \qquad \left(\frac{4-1}{1-2}\right) \left(\frac{1-4}{4-1}\right) = 1$   $B \qquad \left(\frac{4-1}{1-2}\right) \left(\frac{1-4}{4-1}\right) = 1$
- $\mathsf{B}.\quad \left(\tfrac{4-1}{1-2}\right)\!\!\left(\tfrac{1-4}{4-1}\right)\!= -1$
- C.  $\left(\frac{4-1}{1-(-2)}\right)\left(\frac{1-4}{4-1}\right) = 1$
- D.  $\left(\frac{4-1}{1-(-2)}\right)\left(\frac{1-4}{4-1}\right) = -1$

<sup>17.</sup> What is the slope of a line that is perpendicular to the graph of  $y = \frac{4}{3}x + 9$ ?

- A  $-\frac{4}{3}$ B.  $-\frac{3}{4}$ C.  $\frac{3}{4}$ D.  $\frac{4}{3}$
- <sup>18.</sup> The endpoints of a line segment are located at (4, -2) and (h, 10). The midpoint of the line segment is located at (f, g). What are the coordinates of (f, g)?
  - $\mathsf{A} = \left(\frac{4+h}{2}, 4\right)$
  - $\mathsf{B.} \quad \left(\frac{4-h}{2}, 4\right)$
  - C.  $\left(\frac{4+h}{2}, 6\right)$
  - D.  $\left(\frac{4-h}{2}, 6\right)$



- <sup>19.</sup> Line segment *GH* has its midpoint at *M*. If *G* is located at ( $^{-2}$ , 4) and *M* is located at (6, 12), then what are the coordinates of *H*?
  - A (2,8)
  - <sup>B.</sup> (5, 11)
  - <sup>C.</sup> (14, 20)
  - D. (20, 14)
- <sup>20.</sup> A circle has a diameter that extends from (4, -6) to (-8, 10). What are the coordinates of the center of the circle?
  - A (<sup>-</sup>2, 2)
  - <sup>B.</sup> (<sup>-</sup>3, 6)
  - C. (-4, 4)
  - D. (-6, 8)

